Further BF-EtO-catalyzed Cycloadditions of Sesquiterpenic p-Benzoquinones

Pedro Joseph-Nathan, Eleuterio Burgueño-Tapia, and Rosa L. Santillan
J. Nat. Prod., 1993, 56 (10), 1758-1765•DOI:
10.1021/np50100a015 • Publication Date (Web): 01 July 2004

Downloaded from http://pubs.acs.org on April 4, 2009

More About This Article

The permalink http://dx.doi.org/10.1021/np50100a015 provides access to:

- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

FURTHER $\mathrm{BF}_{3} \cdot \mathrm{ET}_{2} \mathrm{O}$-CATALYZED CYCLOADDITIONS OF SESQUITERPENIC p-BENZOQUINONES

Pedro Joseph-Nathan,* Eieuterio Burgueno-Tapia, and Rosa L. Santilan
Departamento de Quimica, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Apartado 14-740, México, D.F., 07000 México

Abstract

Cycloaddition reactions of 0 -methylperezone [4], O-methyl-6methoxyperezone [13], the mixture of 0 -angeloyl-6-methoxyperezone [14] and 0 -methyl-6angeloxyperezone [15], 6-methoxyperezone [16], and 0 -methyl-6-hydroxyperezone [17] are described. The results obtained from 16 and 17 allow confirmation of previous suggestions indicating that $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$-catalyzed reactions of these quinones afford pipitzols or pipitzol derivatives when position 6 is either free or has a protected alcohol, while they afford perezinone: $\mathrm{BF}_{2}[\mathbf{1 0]}$ and/or perezinone $[\mathbf{2 1]}$ when a free hydroxyl group is present at $\mathrm{C}-6$. The structures of 7 -methoxy- α-pipitzol $[18]$ and 7 -methoxy- β-pipitzol [19], obtained from 13, were independently confirmed by single crystal X-ray diffraction analyses.

The thermal transformation of perezone [1] into α-pipitzol [2] and β-pipitzol [3] has been known for more than a century (1). The reaction was postulated $(2,3)$ and then shown (4) to proceed by a concerted [$\pi 4 \mathrm{~s}+\pi 2 \mathrm{~s}$] cycloaddition (5). However, in the thermal transformation $(2,4,6)$ there is a lack of stereochemical induction by the chiral center of perezone [1], since equal amounts of α-pipitzol [2] and β-pipitzol [3] are obtained. Later, it was revealed that perezone $[\mathbf{1}\}$ undergoes a mild highly stereoselective cycloaddition in the presence of boron trifluoride etherate to yield a 9:1 mixture of 2 and 3 in 98% yield (7). Subsequent studies demonstrated that the course of the perezone-topipitzols transformation may be altered in favor of the β-isomer when O-methylperezone [4] is treated with $\mathrm{AlCl}_{3} / \mathrm{Et}_{2} \mathrm{~S}(8)$, since there is a steric crowding of the secondary methyl and methoxy group in the transition state. In 1987 the same intramolecular $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ -

OAng $=0_{2}^{2}$

$$
\begin{aligned}
& \mathrm{R}=\mathrm{R}^{\prime}=\mathrm{H} \\
& \mathrm{R}=\mathrm{Me}, \mathrm{R}^{\prime}=\mathrm{H} \\
& \mathrm{R}=\text { Ang }, \mathrm{R}^{\prime}=\mathrm{H} \\
& \mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{OH} \\
& \mathrm{R}=\mathrm{Ang}, \mathrm{R}^{\prime}=\mathrm{OH} \\
& \mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{OAng} \\
& \mathrm{R}=\mathrm{Me}, \mathrm{R}^{\prime}=\mathrm{OMe} \\
& \mathrm{R}=\mathrm{Ang}, \mathrm{R}^{\prime}=\mathrm{OMe} \\
& \mathrm{R}=\mathrm{Me}, \mathrm{R}^{\prime}=\mathrm{OAng} \\
& \mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{OMe} \\
& \mathrm{R}=\mathrm{Me}, \mathrm{R}^{\prime}=\mathrm{OH}
\end{aligned}
$$

2	$R=R^{\prime}=H$
11	$R=H, R^{\prime}=O A n g$
18	$R=H, R^{\prime}=O M e$
20	$R=H, R^{\prime}=O H$

3 R $=\mathrm{R}^{\prime}=\mathrm{H}$
$9 \mathrm{R}=$ Ang, $\mathrm{R}^{\prime}=\mathrm{H}$
$12 \mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=$ OAng
$19 \mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{OMe}$

$10 \mathrm{R}=\mathrm{BF}_{2}$
$21 R=H$
catalyzed cycloaddition reactions of all known natural perezone analogues (9), which include O-angeloylperezone [5], 6-hydroxyperezone [6], and the equimolecular mixture of hydroxyperezone monoangelates 7 and 8 , showed that reaction of 5 provides a $9: 1$ mixture of β-pipitzol $\{3\}$ and 0 -angeloyl- β-pipitzol [9], in 90% yield. In contrast to perezone, which yields pipitzols, cycloaddition of 6 only affords a stable boron adduct of perezinone [10], while the natural mixture of 7 and 8 reacts with $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ to afford 10 and a mixture of α-perezol $[11]$ and β-perezol [12].

The diversity of products obtained during these cycloadditions indicates that there is a marked influence of the substitutents on the reaction outcome. In continuation of our studies of BF_{3}-catalyzed cycloaddition reactions, we now report the results for 0 methylperezone [4], 0 -methyl-6-methoxyperezone [13], the mixture of 0 -angeloyl-6methoxyperezone [14] and 0 -methyl-6-angeloxyperezone [15], 6-methoxyperezone [16], and 0 -methyl-6-hydroxyperezone [17].

RESULTS AND DISCUSSION

Perezone [1], 6-hydroxyperezone [6], and the mixture of hydroxyperezone monoangelates $\mathbf{7}$ and $\mathbf{8}$ were obtained from dried roots of Perezia bebeclada, A. Gray (Compositae) as reported previously (10,11). O-Methylperezone [4], O-methyl-6merhoxyperezone [13], and the mixture of O-angeloyl- 6 -methoxyperezone $\{14\}$ and 0 -methyl-6-angeloxyperezone [15] were obtained by reaction of the corresponding natural products, $\mathbf{1}, 6,7$, and $\mathbf{8}$ with $\mathrm{Me}_{2} \mathrm{SO}_{4} / \mathrm{K}_{2} \mathrm{CO}_{3}$ under reflux in anhydrous $\mathrm{Me}_{2} \mathrm{CO}$. Compounds 4 and 13 were identified by comparison of their spectroscopic data with those of authentic samples $(2,12)$. The mixture of 14 and 15 was identified based on its ${ }^{1} \mathrm{H}-\mathrm{nmr}$ spectrum which shows characteristic signals for the OMe groups at 4.00 and 3.97 ppm .

6-Methoxyperezone $\{16\}$ and 0 -methyl-6-hydroxyperezone $\{17]$ were prepared by treating THF solutions of the mixture of 14 and 15 with 1% aqueous KOH , followed by cc separation and identification based on spectral characteristics. As expected, the ${ }^{1} \mathrm{H}$ nmr spectra of these compounds were very similar; therefore the assignment was based on their ${ }^{13} \mathrm{C}-\mathrm{nmr}$ spectra which show notable differences in the sp^{2} region. The most significant differences were found for the C-2 and C-5 signals, which in the case of 6methoxyperezone [16] appear at $121.9(\mathrm{C}-2)$ and $122.4(\mathrm{C}-5) \mathrm{ppm}$, while for O-methyl-6-hydroxyperezone [17] they appear at 131.2 (C-2) and 114.2 (C-5) ppm. The assignment of the ${ }^{13} \mathrm{C}-\mathrm{nmr}$ signals corresponding to the quinonoid ring in these compounds (Table 1) is based on substituent effects in quinones (13) and was confirmed by measurement of ${ }^{1} \mathrm{H}$-coupled ${ }^{13} \mathrm{C}-\mathrm{nmr}$ spectra. Assignment of the side chain signals is trivial based on comparison with related compounds $(12,13)$.

Table 1. ${ }^{13} \mathrm{C}$-nmr Data of Perezone Derivatives 16 and 17 and Pipitzol Derivatives 18 and 19.

Carbon	Compound		Carbon	Compound	
	16	17		18	19
C-1	183.5	183.7	C-1	26.4	25.2
C-2	121.9	131.2	C-2	36.6	35.1
C-3	150.9	157.8	C-3	35.4	34.9
C-4	184.4	184.1	C-3a	72.6	71.0
C-5	122.4	114.2	C-4	193.2	193.0
C-6	157.4	150.9	C-5	146.0	146.0
C-7	8.0	7.7	C-6	129.0	131.1
C-8	29.4	29.6	C-7	93.4	92.3
C-9	18.4	18.9	C-8	40.6	40.5
C-10	34.2	34.6	C-8a	56.4	58.3
C-11	26.7	26.8	C-9	204.9	204.7
C-12	124.5	124.4	C-10	14.7	13.6
C-13	131.4	131.7	C-11	12.7	12.9
C-14	17.7	17.7	C-12	24.9	25.1
C-15	25.7	25.7	C-13	20.3	18.0
OMe	61.5	61.7	OMe	55.0	55.1

CyCloaddition reactions.-Reactions of 0 -methylperezone [4] in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at 0° and at -20° in the presence of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ yield mixtures of α-pipitzol [2] and β-pipitzol [3]. Integration of the signals at 2.83 and 2.76 ppm in the ${ }^{1} \mathrm{H}$-nmr spectra, corresponding to the $\mathrm{H}-7$ of 2 and 3 , respectively, indicated that in all cases the major product was the β-isomer. Overall yields ($71-94 \%$) and stereoselectivities ($1: 5$ to $1: 8$ in favor of the β-isomer) obtained from the $\mathrm{BF}_{3} \cdot \mathrm{Er}_{2} \mathrm{O}$ cyclization reactions of $\boldsymbol{4}$ are higher than those obtained using AlCl_{3} (1:3 in favor of the β-isomer and 36% overall yield) (8).

Reaction of 0 -methyl-6-methoxyperezone [13] with $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ similarly gave a mixture of 7 -methoxy- α-pipitzol [18] and 7-methoxy- β-pipitzol [19], which were purified by cc. Both compounds gave a positive FeCl_{3} test (14), providing evidence for a methoxy group at position 7. Integration of the signals at 3.58 and 3.55 ppm , corresponding to the methoxyl groups of 18 and 19, respectively, indicated that the major product was also the β-isomer. The stereochemistry of 18 and 19 was determined by comparison of their ORD data in the $589-365 \mathrm{~nm}$ region with those described for α-pipitzol [2] and β-pipitzol \{3] (15), and for 20 (11). Additional evidence was obtained from ${ }^{1} \mathrm{H}-\mathrm{nmr}$ data, since the gem-dimethyl group signals in $\mathbf{1 8}$ show a chemical shift difference ($\Delta \delta$) of 0.06 ppm , in contrast to a $\Delta \delta=0.02 \mathrm{ppm}$ observed for 19 , which is in accordance with the differences observed for the same signals in 2 and 3 (16) as well as for $\mathbf{1 1}$ and $\mathbf{1 2}$ (11). These results were independently confirmed by single crystal X ray studies.

The monomethylether-monoangelate mixture of hydroxyperezones 14 and 15 was treated with 8 equiv of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ at 0°, yielding three products identified as perezinone: $\mathrm{BF}_{2}[10\}$ (9), 12, and 19, the latter being identical with the product obtained by reaction of 13 .

Although in 1987 it was suggested (9) that the $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$-catalyzed reactions of these quinones afford pipitzol or pipitzol derivatives only in those cases when position 6 is either free or has a protected alcohol and that substitution at C-6 by a free hydroxyl group leads to perezinone: $\mathrm{BF}_{2}[\mathbf{1 0]}$ and/or perezinone [21], these propositions could not be confirmed at that time, because we were unable to separate the starting quinones (monoangelates of hydroxyperezone $\mathbf{7}$ and 8) even after careful liquid $c c$. In order to

Figure 1. Perspective view of the molecular structure of 18.
afford further evidence for these propositions, 16 and 17 were independently reacted with 8 equiv of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ at 0° and -20°. Thus, the $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$-catalyzed cyclization of 16 yields 18 and 19 in a 2.5 to 1.0 ratio in favor of the α-isomer. Both products were

Figure 2. Perspective view of the molecular structure of 19.

Table 2. Experimentally Refined Fractional Atomic Coordinates (10^{4}) of $\mathbf{1 8}^{\mathbf{2}}$.

Atom	x	y	z
O-4.	7109 (7)	6348 (5)	10066 (2)
O-5	6856 (7)	8762 (6)	10793 (3)
O-7	5184 (5)	11008 (4)	8576 (3)
O-9	4063 (6)	8148 (5)	8404 (3)
C-1	8917 (10)	7294 (8)	7994 (4)
C-2	8395 (9)	5822 (8)	8221 (4)
C-3	6644 (9)	6916 (7)	8447 (4)
C-3a	6669 (8)	7379 (7)	8881 (4)
C-4	6774 (9)	7368 (8)	9691 (4)
C-5	6590 (8)	8757 (7)	10036 (4)
C-6	6248 (8)	9904 (7)	9680 (4)
C-7	6029 (8)	9845 (7)	8852 (3)
C-8	7654 (8)	9755 (7)	8420 (3)
C-8a	8177 (9)	8220 (7)	8612 (4)
C-9	5353 (8)	8408 (7)	8683 (4)
C-10	5910 (11)	4737 (8)	8823 (4)
C-11	6163 (11)	11308 (7)	10070 (4)
C-12	8865 (10)	10810 (7)	8702 (4)
C-13	7330 (10)	9996 (9)	7610 (3)
C-14	3536 (9)	11123 (8)	8807 (4)

${ }^{2}$ ESDs in the last significant digits are shown in parentheses.
identical to those obtained by reaction of 13 . In contrast, reaction of 17 with the same Lewis acid, under the same reaction conditions, gave perezinone: $\mathrm{BF}_{2}[\mathbf{1 0}]$ and perezinone [21] in 1.7 to 1.0 and in 2.0 to 1.0 ratios, in favor of $\mathbf{1 0}$, for the reactions performed at 0° and -20°, respectively. Thus, the results obtained from the reactions of 16 and 17 confirm the previous suggestions.

Table 3. Experimentally Refined Fractional Atomic Coordinates (10^{4}) of $\mathbf{1 9}^{\mathbf{2}}$.

Atom	x	y	z
O-4.	3664 (8)	5791 (6)	8349 (5)
O-5	6536 (12)	5178 (9)	7693 (7)
O-7	8643 (6)	8465 (5)	8941 (4)
O-9	5581 (8)	8998 (5)	8544 (5)
C-1	4785 (11)	7149 (8)	11147 (7)
C-2	3628 (14)	7923 (13)	10745 (8)
C-3	3299 (11)	7541 (8)	9708 (7)
C-3a	4922 (11)	7249 (7)	9342 (6)
C-4	4959 (10)	6324 (7)	8629 (6)
C-5	6501 (11)	6088 (6)	8268 (6)
C-6	7674 (11)	6680 (7)	8483 (6)
C-7	7485 (10)	7722 (7)	9110 (6)
C-8	7373 (10)	7447 (7)	10233 (7)
C-8a	5806 (10)	6880 (7)	10287 (5)
C-9	5923 (10)	8139 (7)	8911 (6)
C-10	2460 (11)	8341 (11)	9094 (10)
C-11	9188 (10)	6333 (8)	8139 (8)
C-12	8630 (12)	6705 (8)	10599 (7)
C-13	7422 (12)	8561 (7)	10776 (7)
C-14	8752 (12)	8901 (8)	7974 (7)

${ }^{*} E S D s$ in the last significant digits are shown in parentheses.

In conclusion, higher stereoselectivities and overall yields were obtained by lowering reaction temperatures. At lower temperature, the ratio of Lewis acid to quinone had a considerable effect on the overall yields, and the best yields were obtained at -20° using a $1: 16$ ratio of quinone to $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$.

The molecular structures of 18 and 19 are illustrated in Figures 1 and 2, respectively, and the corresponding atomic coordinates are listed in Tables 2 and 3, respectively. The stereochemistry evidenced from the X -ray analyses of 18 and 19 is in agreement with that deduced from ORD and ${ }^{1} \mathrm{H}-\mathrm{nmr}$ data. The hydrogen-hydrogen dihedral angles for the five-membered rings ($\mathrm{C}-1-\mathrm{C}-2-\mathrm{C}-3-\mathrm{C}-3 \mathrm{a}-\mathrm{C}-8 \mathrm{a}$) were compared with those deduced from ${ }^{1} \mathrm{H}-\mathrm{nmr}$ measurements (17). The good agreement indicates that in both cases the conformation of the five-membered ring is similar in the solid state and in solution.

EXPERIMENTAL

General experimental procedures.- ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{nmf}$ spectra were measured on a Varian XI300 GS spectrometer in CDCl_{3} solutions containing TMS as the internal standard. Ir spectra were recorded as CHCl_{3} solutions on a Nicolet MX-1-FT instrument, and uv spectra were determined on a Pye Unicam SP-800 spectrophotometer using 95% ErOH. Mass spectra were obtained with a Hewlett Packard 5989A spectrometer at 70 eV . Optical rotations were performed at room temperature on a Perkin-Elmer 241 polarimeter in CHCl_{3}. Melting points were obtained on a Fisher-Johns melting point apparatus and are uncorrected. For gravity cc, Merck Si gel 60 ($230-400$ mesh ASTM) was used.

X-ray data. ${ }^{1}$-Data collection for 7 -methoxy- α-pipitzol [18] and 7 -methoxy- β-pipitzol [19] was done in the $\theta: 2 \theta$ scanning mode on a Nicolet R 3 m four circle diffractometer using $\mathrm{CuK} \alpha$ radiation ($\lambda=1.54178 \AA$). The collected reflections were corrected for background, Lorentz, and polarization effects; crystal decay was negligible and no absorption corrections were applied. The structures were solved by direct methods using the software provided by the diffractometer manufacturer. For structural refinements the non-hydrogen atoms were treated anisotropically, and the hydrogen atoms bonded to carbons, included in the structure factor calculation, were refined isotropically.

Naturai products.-Perezone [1] and 6-hydroxyperezone [6] were obtained from air-dried roots of P. bebeclada as reported (10,11). Voucher specimens are deposited at the herbarium of Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, México. The equimolecular mixture of hydroxyperezone monoangelates $\mathbf{7}$ and $\mathbf{8}$ was available from previous studies (9).

Methyt ethers.-O-Methylperezone [\{4].-A solution of perezone [1] (0.5 g) in 100 ml anhydrous $\mathrm{Me}_{2} \mathrm{CO}$ was refluxed 3 h in the presence of $0.34 \mathrm{~g} \mathrm{~K}_{2} \mathrm{CO}_{3}$ and $0.21 \mathrm{ml} \mathrm{Me}_{2} \mathrm{SO}_{4}$. The solvent was evaporated, and the organic material was extracted with EtOAc. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated to dryness. The residue was chromatographed over SiO_{2}, eluting with hexane-ErOAc ($95: 5$), to yield $0.48 \mathrm{~g}(91.0 \%)$ of $\mathbf{4}(2,12)$.

O-Methyl-6-methoxyperezone [13].-A solution of 0.7 g of $\mathbf{6}, 0.81 \mathrm{~g}$ of $\mathrm{K}_{2} \mathrm{CO}_{3}$, and 0.3 ml of $\mathrm{Me}_{2} \mathrm{SO}_{4}$ in 125 ml anhydrous $\mathrm{Me}_{2} \mathrm{CO}$ was refluxed 3 h . Workup as in the case of 4 y yielded $0.61 \mathrm{~g}(87.0 \%)$ of $\mathbf{1 3}(2,12)$.

O-Angeloyl-6-metboxyperezone [14] and O-methyl-6-angeloxyperezone [15].-The narural mixture of hydroxyperezone monoangelates 7 and $8(0.15 \mathrm{~g})$ was methylated using the conditions described for the obtention of $\mathbf{4}$. The residue was chromatographed over Si gel, yielding, in the fractions eluted with hexane$\operatorname{EtOAc}(95: 5), 0.12 \mathrm{~g}(77.0 \%)$ of the mixture of 14 and $15 .{ }^{1} \mathrm{H} \mathrm{nmr} 6.33(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3$) , $5.04(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-$ 12), 4.0 and 3.97 ($\mathrm{s}, 3 \mathrm{H}$ each, OMe), 3.12 and 3.03 ($\mathrm{m}, 1 \mathrm{H}$ each, $\mathrm{H}-8$), 1.95 and 1.93 ($\mathrm{s}, 3 \mathrm{H}$ each, Me- 7), 1.2 (d, 6H, Me-9).

Hydroxyperezone monomethylethers 16 and 17.-A solution containing a mixture of 14 and $15(0.40 \mathrm{~g})$ in 100 ml of THF was treated with 20 ml of a 1% aqueous KOH solution. The mixture was stirred at room temperature 15 min and neutralized with $10 \% \mathrm{HCl}$. The organic layer was extracted with ErOAc, washed

[^0]with $\mathrm{H}_{2} \mathrm{O}$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated to dryness. The residue was chromatographed over Si gel. Those fractions eluted with hexane-EtOAc (90:10) gave 0.154 g of 6-methoxyperezone [16] as a red oil: uv $\lambda \max 288$ ($\log \in 4.0$), 214 (3.9); ir 3683 (free OH), 3619 (associated OH), 1517, 1474, 1421 cm^{-1} (quinonoid system and $\mathrm{C}=\mathrm{C}$); ${ }^{1} \mathrm{H} \mathrm{nmr} \delta 7.26(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 5.08$ (t heptet, $J=7.0,1.4,1 \mathrm{H}, \mathrm{H}-12$), $4.08(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.09(\mathrm{tq}, J=8.0,7.0,1 \mathrm{H}, \mathrm{H}-8), 1.93(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-7), 1.64(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-15), 1.53(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{Me}-14$), $1.20(\mathrm{~d}, J=7,3 \mathrm{H}, \mathrm{Me}-9$); $\mathrm{ms}(70 \mathrm{eV}) \mathrm{m} / \mathrm{z}$ (rel. int) [M] 278 (42), 196 (100), 181 (91), 163 (55), 41 (36); ${ }^{13} \mathrm{C}$ nmr see Table 1 . Those fractions eluted with hexane-EtOAc (7:3) afforded 0-methyl-6hydroxyperezone $\{17](0.127 \mathrm{~g}$) as a red oil: uv $\lambda \max 287$ ($\log \in 4.01$), $213 \mathrm{~nm}(\log \in 3.77$); ir 3682 (free OH), 3616 (associated OH), $1523,1486,1424,1381 \mathrm{~cm}^{-1}$ (quinonoid system and $\mathrm{C}=\mathrm{C}$); ${ }^{1} \mathrm{H} \mathrm{nmr} 87.24$ $(\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 5.04$ (r heptet, $J=7.0,1.4,1 \mathrm{H}, \mathrm{H}-12$), $4.03(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.09(\mathrm{tq}, J=8.0,7.0,1 \mathrm{H}, \mathrm{H}-8)$, 1.9 (s, 3H, Me-7), $1.64(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-15), 1.53$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}-14$), 1.18 (d, $J=7,3 \mathrm{H}, \mathrm{Me}-9$); ms (70 eV) m/z (rel. int.) $[\mathbf{M}]^{+} 278(59), 196(100), 181(54), 163(46), 41(22) ;{ }^{13} \mathrm{C} \mathrm{nmr}$ see Table 1 . The overall yield for this reaction was 91%.

Cyclization reactions.-General metbod.-Cooled solutions of 0.1 g of the appropriate benzoquinone in 7 ml of anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were treated with $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ under N_{2}. After the time indicated for each procedure, the solution was quenched with $\mathrm{H}_{2} \mathrm{O}$, and the product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated to dryness. The residue was chromatographed over Si gel.

Reaction of O -methylperezone [4].-Solutions containing O -methylperezone in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were cooled to 0° and -20°, treated with variable amounts of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$, and worked up using the general procedure. After 6 h at 0° and 60 h at -20°, the products were chromatographed over Si gel, eluting with hexane-EtOAc (97:3) to yield a mixture of α-pipitzol [2] and β-pipitzol [3] identified by comparison with authentic samples (16).

Reaction of O -methyl-6-metboxyperezone [13].-Solutions of 13 in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were treated with 8 and 16 equiv of BF_{3} at 0° and -20° and worked up using the general procedure. After 16 h at 0° and 160 h at -20°, the reaction products were chromatographed on Si gel, eluting with hexane-EtOAc ($97: 3$). The first fractions yielded 7 -methoxy- α-pipitzol [18] as colorless crystals: $m p 118-120^{\circ}$; uv $\lambda \max 284$ ($\log \epsilon$ 3.76), $251(\log \in 3.46), 2.15 \mathrm{~nm}(\log \in 3.24)$; ir $3447(\mathrm{OH}), 1766$ (cyclopentanone $C=0$), 1674 and 1640 $(\mathrm{O}=\mathrm{C}-\mathrm{COH}=\mathrm{C}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr} \delta 6.18(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 3.58(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 2.26\left(\mathrm{ddq}, J_{3-2 \beta}=11, J_{3.2 \alpha}=5.6, J_{3}\right.$. $\left.{ }_{10}=7,1 \mathrm{H}, \mathrm{H}-3\right), 2.04(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-11), 2.01\left(\mathrm{dd}, J_{\mathrm{se}-1 \mathrm{\beta}}=9, J_{8 \mathrm{a}-1 \mathrm{a}}=7,1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}\right), 1.87(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 1.76(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}-1), 1.58$ (m, 1H, H-2'), 1.49 (m, 1H, H-1'), 1.41 (d, J=7, 3H, Me-10), 0.98 (s, 3H, Me-13), 0.92 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}-12$); $\mathrm{ms}(70 \mathrm{eV}) \mathrm{m} / z$ (rel. int.) $[\mathrm{M}\}^{+} 278(20.8), 55(62), 53(52), 43(59), 41(100) ;\{\alpha] \lambda(c=0.09)$ $599 / 260,578 / 275,546 / 325,436 / 93,465 / 2754 ;{ }^{13} \mathrm{C} \mathrm{nmr}$ see Table 1.

The last fractions eluted with hexane/EtOAc yielded 7-methoxy- β-pipitzol [19] as colorless crystals: $\mathrm{mp} 116-118^{\circ}$; uv $\lambda \max 284(\log \in 3.84), 2.56(\log \in 3.56), 2.09 \mathrm{~nm}(\log \in 3.48)$; ir $3466(\mathrm{OH}), 1767(\mathrm{C}=0$ cyclopentanone), 1669 and $1639 \mathrm{~cm}^{-1}(\mathrm{O}=\mathrm{C}-\mathrm{COH}=\mathrm{C})$; ${ }^{1} \mathrm{H} \mathrm{nmr} \delta 6.14(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 3.55(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe})$, $2.6\left(\mathrm{ddq}, J_{3-10}=7, J_{3-2 \mathrm{~B}}=12, J_{3-2 \mathrm{a}}=6,1 \mathrm{H}, \mathrm{H}-3\right), 2.04(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-11), 1.94\left(\mathrm{dd}, J_{\mathrm{se-1}}=10, J_{\mathrm{sa}-1 \mathrm{c}}=3,1 \mathrm{H}, \mathrm{H}-\right.$ 8 a), 1.85 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-2$), 1.79 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-1$), 1.58 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}$), 1.36 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}$), 1.34 (d, J=7, 3H, $\mathrm{Me}-10$), 0.99 (s, $1 \mathrm{H}, \mathrm{Me}-13$), 0.97 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}-12$); $\mathrm{ms}(70 \mathrm{eV}) \mathrm{m} / \mathrm{z}$ (rel. int.) [M] ${ }^{+} 278$ (13), 55 (77), 53 (61), 43 (73), 41 (100); ${ }^{13} \mathrm{C}$ nmr see Table 1; $[\alpha] \lambda\left(c=0.1\right.$) ${ }^{589 /-239, ~ 578 /-252, ~ 546 /-300, ~ 436 /-679, ~ 365 /-2067 . ~}$

Reaction of O-angeloxyl-6-methaxyperezone [14] and O-metbyl-6-angeloxy perezone [15].—A solution containing a mixture of 14 and 15 was cooled to 0°, treated with 8 equiv of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$, and stored at 0° for 16 h . After workup, the residue was crystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane to yield $7.0 \mathrm{mg}(8.7 \%)$ of perezinone: $\mathrm{BF}_{2}[\mathbf{1 0}]$ as yellow needles, $\mathrm{mp} 170^{\circ}$ (dec), identical with an authentic sample (9). The filtrate was evaporated and chromatographed over Si gel, eluting with hexane-EtOAc (97:3) to yield 6.0 mg (6.3%) of β-perezol [12] (9) and 20 mg (27.0\%) of 7 -methoxy- β-pipitzol [19]; the latter was identical to the product obtained by reaction of 0 -methyl- 6 -methoxyperezone [13].

Reaction of 6-methoxyperezone [16]. Solutions of 16 in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were cooled to 0° and -20° under an N_{2} atmosphere and treated with 8 and 16 equiv respectively, of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$. The reaction mixtures were stored 16 h at 0° and 196 h at -20°. After workup as described in the general method, the residues were chromatographed over Si gel to yield 12.3 mg of 18 and 5.0 mg of 19 for the reactions at 0°, and 12.8 mg of 18 and 5.12 mg of 19 for reactions at -20°. The overall yields were 17.3% and 17.9% for the reactions performed at 0° and -20°, respectively.

Reaction of O -metbyl-6-bydroxyperezone [17].-Solutions of 17 were treated with 8 equiv of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ at 0° and -20° under the conditions described for 4 . The reaction mixture was stored 6 h at 0°, quenched, and worked up in the usual manner. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane, yielding 33 mg of solid perezinone: $\mathrm{BF}_{2}[10]$, identical with the product obtained by reaction of the mixture of 14 and 15 . The filtrate was evaporated and chromatographed over Si gel eluting with hexane/EtOAc mixtures of increasing
polarity. This provided 20 mg of perezinone [21] (11), mp 145-146 ${ }^{\circ}$. In another experiment, the reaction mixture was stored 12 h at -20° and worked up as usual, to yield 33.0 of $\mathbf{1 0}$ and 17.0 mg of 21. The overall yields were 53% at 0° and 50% at -20°.

ACKNOWLEDGMENTS

Partial financial support from CoNaCyT, CoSNET and Proyectos Estratégicos-SEP is acknowledged.

LITERATURE CITED

1. R. Anchütz and W. Leather, Chem. Ber., 18, 715 (1885).
2. F. Walls, M. Salmón, J. Padilla, P. Joseph-Nathan, and J. Romo, Bol. Inst. Quím. Univ. Nal. Autón. Méx., 17, 3 (1965).
3. R.B. Woodward and R. Hoffmann, "The Conservation of Orbital Symmetry," Academic Press, New York, 1979, p. 87.
4. P. Joseph-Nathan, V. Mendoza, and E. Garcia, Tetrahedron, 33, 1573 (1977).
5. I. Fleming, "Frontier Orbitals and Organic Chemical Reactions," Wiley, New York, 1976, p. 92.
6. F. Walls, J. Padilla, P. Joseph-Nathan, F. Giral, M. Escobar, and J. Romo, Tetrabedron, 22, 2387 (1966).
7. I.H. Sánchez, R. Yáñez, R. Enríquez, and P. Joseph-Nathan, J. Org. Cbem., 46, 2818 (1981).
8. I.H. Sánchez, F. Basurto, and P. Joseph-Nathan, J. Nat. Prod., 47, 382 (1984).
9. P. Joseph-Nathan, M.E. Garibay, and R.L. Santillan, J. Org. Cbem., 52, 759 (1987).
10. P. Joseph-Narhan, M.P. González, E. García G., H. Barrios, and F. Walls, Tetrabedron, 30, 3461 (1974).
11. P. Joseph-Nathan, M.P. González, and V.M. Rodríguez, Phytochemistry, 11, 1803 (1972).
12. P. Joseph-Nathan, M.P. González, L.F. Johnson, and J.N. Shoolery, Org. Magn. Reson., 3, 23 (1971).
13. P. Joseph-Nathan, D. Abramo-Brumo, and D.A. Ortega, Org. Magn. Reson., 15, 311 (1981).
14. R.L. Shriner, R.C. Fuson, and D.Y. Curtin, "Systematic Identification of Organic Compounds," Wiley \& Son, New York, 1964.
15. G. Snatzke, Ed., "Optical Rotatory Dispersion and Circular Dichroism in Organic Chemistry," Heyden Londres, 1967, pp. 13, 135.
16. F. Walls, J. Romo, P. Joseph-Nathan, F. Giral, and J. Romo, Tetrahedron Lett., 21, 1577 (1965).
17. C.M. Cerda-Garcia-Rojas, L.G. Zepeda, and P. Joseph-Nathan, Tetrabedron Comput. Metbodol., 3, 113 (1990).

Received 15 March 1993

[^0]: ${ }^{1}$ Atomic coordinates for these structures have been deposited with the Cambridge Crystallographic Data Centre and can be obtained on request from Dr. Olga Kennard, University Chemical Laboratory, 12 Union Road, Cambridge, CB2 1EZ, UK.

